IF/P7-25 Studies of Phenomena Related to Fast Ignition of a Fusion Target by Laser-Driven Proton Beams
نویسندگان
چکیده
Generation of high-current proton beams of parameters scalable to those required for fast ignition of a fusion target was studied numerically and experimentally. Using a hydrodynamic relativistic 2D code, it was found that laser-induced skin-layer ponderomotive acceleration (SLPA) makes possible to produce collimated proton beams of MA currents and TA/cm current densities at relativistic laser intensities above 10W/cm. The production of proton beams of such extreme parameters was demonstrated in the experiment performed on the LULI 100TW laser facility, in which a subpicosecond laser pulse of intensity up to 2x10W/cm was used as the proton beam driver. Based on these results, a concept of ICF fast ignition using SLPA-produced proton beams was proposed.
منابع مشابه
ترابرد نوترون، الکترون و فوتون در ساچمههای ICF در حالت اشتعال جرقهای و اشتعال سریع
Fusion energy due to inertial confinement has progressed in the last few decades. In order to increase energy efficiency in this method various designs have been presented. The standard scheme for direct ignition and fast ignition fuel targets are considered. Neutrons, electrons and photons transport in targets containing different combinations of Li and Be are calculated in both direct and fas...
متن کاملEnergy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion
In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...
متن کاملEnergy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion
In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...
متن کاملمحاسبه بهره همجوشی اشتعال سریع با حضور میدان مغناطیسی توسط الکترونهای نسبیتی و باریکههای پروتون
Fast ignition is a new method for inertial confinement fusion (ICF) in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the u...
متن کاملافروزش سریع- شوکی رهیافتی نوین برای همجوشی محصور سازی اینرسی
A new concept for inertial confinement fusion called fast-shock ignition (FSI) is introduced as a credible scheme in order to obtain high target gain. In the proposed model, the separation of fuel ignition into two successive steps, under the suitable conditions, reduces required ignitor energy for the fuel ignition. The main procedure in FSI concept is compressing the fuel up to stagnation. T...
متن کامل